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1. Introduction and problem formulation

Using the Laplace transform, we (Jordan and Puri, 1999) derived
the exact solution to Stokes’ first problem for a dipolar fluid (see
Cowin (1974), Straughan (1987) and the references therein) that
is valid for arbitrary values of the material parameters d(>0) and
I(>0). The present Note is devoted to extending this earlier work
of ours to the case of micropolar fluids, the theory of which was
formulated by Eringen (1966). In doing so, we also extend the re-
sults of Jordan et al. (2000) on Laplace inverses involving doubly-
nested square roots with one branch point to a more general class
of such inverses possessing two branch points.

To this end, we observe that by replacing the straight channel of
Kirwan and Newman (1972),> who considered the unsteady plane
Couette flow of an incompressible micropolar fluid, with the half-
space y > 0, and setting the pressure gradient term in their equation
of motion to zero, one possible way to formulation Stokes’ first prob-
lem for a micropolar fluid is as the IBVP

PIUy + 2kup — k(2V + K)Uyy — [V 4+ L (U + k) Uy
+V(V+K)uyyyy :07 (y7 t) € (0,0C) X (01 00)7 (]1)

u(0,t) =Uo0(t), u(oo,t)=0, uyy(0,t)=Ms, uyy(co,t)=0 (t>0),

(1.2)

* Corresponding author. Tel.: +1 228 688 4338; fax: +1 228 688 5049.
E-mail address: pjordan@nrlssc.navy.mil (P.M. Jordan).
! Present address: 812 Rochelle Ave., Monroe, LA 71201, USA.
2 The mass density, p, appears to have been inadvertently omitted from Eqs. (7)-(9)
of Kirwan and Newman (1972); see Devakar and lyengar (2009), wherein the first two
of these equations are correctly stated in Eqs. (3.1) and (3.2), respectively.
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uy,0) =u(y,00=0 (y>0). (1.3)

In IBVP (1), the velocity vector has the form v= (u(y, t), 0, 0),
where the incompressibility condition V - v =0 is identically satis-
fied; 0(-) denotes the Heaviside unit step function; .7, y, k, and the
dynamic viscosity p are positive constants; here, v = u/p denotes
the kinematic viscosity; Up is a nonzero constant; M; is taken as
constant; and we have set k: = k/p for convenience.

Remark 1. The boundary conditions (BC)s assumed in Eq. (1.2),
which in the present context are equivalent to BCs of “type A” in
dipolar fluid theory (Straughan, 1987), were suggested by Kirwan
and Newman (1972). For more on the question of what BCs are
appropriate in the micropolar context, see also Eringen (1966) and
Cowin (1974).

2. Exact solution via the Laplace transform

To reduce the number of coefficients, we introduce the follow-
ing nondimensional quantities: u' = u/Uy, ¥ =y/Lo, t = t/To, where

 y+s2u+k) 2l
bo=y"—— and =3 r @)

and recast IBVP (1) in the simpler form

htlge + U — Uy — Uy + Py, =0, (y,£) € (0,00) x (0,00),  (3.1)

u(0,6) = 0(t), u(co,t)=0, Uy (0,)=M, uy(co,t)=0 (t>0),
(32)
uy,0)=u(y,00=0 (y>0), 3.3)
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where M is the nondimensional form of M and all primes have been
suppressed but remain understood. Furthermore, ¢>0 and he
(0,1/2) are given by

y(pu+k) J2u+k)
e LR @
k(2u+ k) akL?

On applying the temporal Laplace transform, .#[-], to Egs. (3.1)
and (3.2), using the initial conditions given in Eq. (3.3), and then
solving the resulting subsidiary equation, the transform domain
solution is found to be

_ Pleyr? — ek —
ly.s) = e e

M(e*rzy — e*rIY)}
s\/s2(1 — 4he?) 1 25(1 - 26%) + 1

where s is the transform parameter, a bar over a quantity denotes
the image of that quantity in the Laplace transform domain (e.g.,

u(y,s) := Z[u(y,t)]), and

rm:%\js+li\/(s+1;24225(hs+1). -

(5)

To simplify the task of inversion, it is convenient to recast Eq.
(5) as

u(y,s) = t(y,s) — (€M — 1)i(y,s) + U3(y,3), (7)
where

_ e yey ey ey

BT uz*Zs\/(s—&-l)z—Mzs(hs-»-l)’

i3 = sil,. (8)

Since the inverses we require do not appear to be given in any of
the standard tables, we turn to the complex inversion formula (see,
e.g., Duffy, 2004) and observe that the inverses of the terms in Eq.
(7) are given by

o+iT

1 _
Ur23(y,t) = lim ety 23(y,s)ds

27 T Joir

(t>0), 9)

where uq,3(y,t) =0 for t < 0 and the arbitrary real number ¢ > 0 lies
to the right of all singularities. The first step in evaluating these
integrals is determining the singularities of their integrands. Omit-
ting the details, it can be shown that the only non-removable singu-
larities of i1y, consist of a simple pole at s =0 and branch points at
s ={—1/h, 0} while those of ii3 consist of only the two branch points.
Thus, by Cauchy’s theorem we have

1 _
— ffé €'ty 55(y,5)ds = 0, (10)
where the Bromwich contour C (see Fig. 1) is traversed in the coun-
terclockwise direction.

Following standard techniques of contour integration (see, e.g.,
Duffy, 2004), it can be established that, for all h € (0,1/2) and ¢> 0,

i ,t>=e<t>{%<1+ew)_ x /J/“e*"fsinw(m]dn}

n
/“ exp[—t(n+1/h)sinfyw. (i)]cos[yw_ (W)]dﬂ’
0

< (4h)™2,

n+1/h
o) /'1~ exp[—t(n+1/h)]sin[ye. ()] coslyw_(1)]dn
| J n+1/h ’ > (4h)” 12
n /”c exp[—t(17+1/h)]sin[yw, ()] coshlyw_ (i)]dn
" n+1/h ’

(11)

1 1 [V e sinfyw(n)dy
U (y,6) =0(t)S 5(1—e ") —5—
’ {2 2m /0 17\/(17 1) +4n(1- hn)}

/”c exp[—t(n+1/h)]sin[yw_(n)]coslyw. (1)|dn <(4h)'2,
O+ 1/ [0+ 1/h)— 17 —dne (hn +1)
o /”” exp[-—t(n-+1/h)sinlye_(p]coslye, (n)ldy
e ('7+1/h)\/[('l+1/h)—1]2—4’742(’“7”) /> (4h) 2
. /“ exp[-t(n+1/h)sinhlye ()] coslye, (n))dn 7
T+ 1M+ 1/h) =17 — 4 (hn+1)]
(12)
h e-ntsinlyco(n)]dy
u -,
v {271/ \/17 1) +4ne2(1 hn)}
/ expl-t(n+ 1/h))sinlyo>_(p)]coslyw. ()dn 4
0 VI0+1/h) 1 —4né (hy + 1)
L0 [T ety hlsinbo (] cosyo )dn
0 Vo417 =12 —4n(hy+1) oo
/ exp[—t(n+1/h)]sinhlyw_(17)]cos[yw. (i1)]dy "
r VI+1/1) =172 —dné (1)
(13)
where
1 [n=1+/(n—1)"+4hn(1/h—n)
w(n)z\j v 5 ., (14)
1
wi(ﬂ)—zz\/’(f’ﬂrl/h)—liZf\/hW('HUh)7 (15)
L_1-h(1+22 -2V +h— (16)

h(4he* — 1)
and we observe that "> 0 if and only if ¢ > 1/v4h.

3. Special/limiting cases and other applications

Remark 2. The steady-state solution, u.(y), is defined as
U (y): =limeu(y,t) and is given by u.(y):=1—MA[1 -
exp(—y/¢)], which is identical in form to that of the dipolar fluid
case (see Jordan and Puri, 1999, Eq. (4.3)).

Remark 3. If we take h=1 - ¢% implying ¢ € (1,1), then i3
simplify to such an extent that they can be easily inverted using,
e.g., the tables of Laplace inverses given in (Erdélyi, 1954, Chap.
V). Thus, for this special case u(y,t) = #(y, t), where % is defined as

Ay, ) == H(I){erfc<2\[> - aziz e’ {ey‘/aerfc<ziﬁ+ \/(f>

+ e MVaerfc (ZL\/E - \/E> — eWVatberfc <2i\/f +4/(a+ b)t)

— e 9Varberfc (21\/5 —/(a+ b)t)}
- M2 {erfc <2 \[> —% {eyf erfc< + \/&)

-Waarf o t> cyvath f<i b)
+e erc(z\/E Vvat) —e erfc NG \(a+

— e ¥Varberfc (Zi\/f —/(a+ b)t)} ; {e‘y‘rerfc (—\3;_ \/ﬁ)
+e*cy‘/5erfc<%f— \/E)” } (17)
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Fig. 1. Bromwich contour, C, used to evaluate the integrals in Eq. (10). Here, € and ¢ are small positive quantities.

Here, erfc (-) denotes the complementary error function and the
positive constants a, b, and c are defined as a= (2¢2—-1)"!, b=

(1-=¢)"" and c=¢"V1 -7

Remark 4. Setting ¢ =1, and letting h — 0 reduces u to the I; =1
special case of (Jordan and Puri, 1999, Eq. (3.4)), i.e., the
corresponding solution for the case of a dipolar® fluid. On the
other hand, letting ¢ — 0 reduces u to the solution of Stokes’ first
problem for an Oldroyd-B liquid; see pp. 354-355 of Duffy (2004),
and also Christov and Jordan (2009).

Remark 5. It is noteworthy that Eq. (1.1), which is identical in
form to the equation of motion for this problem involving a micro-
structure-laden fluid of the type described by the theory of Kline
and Allen (1970), also arises in the study of incompressible flow
in fractured or fissured media (Guenther and Lee, 1996). Eq. (1.1)
can also be regarded as the governing equation for a particular type
of two-species reaction-diffusion system.
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